


Environmental Research

Volume 165, August 2018, Pages 40-45

Long-term exposure to wind turbine noise at night and risk for diabetes: A nationwide cohort study

Aslak Harbo Poulsen ^a ○ ▷, Ole Raaschou-Nielsen ^{a c}, Alfredo Peña ^b, Andrea N. Hahmann ^b, Rikke Baastrup Nordsborg ^a, Matthias Ketzel ^c, Jørgen Brandt ^c, Mette Sørensen ^{a d}

Show more V

https://doi.org/10.1016/j.envres.2018.03.040 7 Get rights and content 7

Highlights

- We investigated a cohort of 365,986 Danes living close to wind turbines (WT).
- We identified 25,148 cases of diabetes during the period 1996–2002.
- Long-term exposure to WT noise was not associated with increased risk of diabetes.
- Similar results were seen for indoor night-time noise and across a range of strata.
- Results do not support an association between wind turbine noise and diabetes.

Abstract

Focus on renewable energy sources and reduced unit costs has led to increased number of wind turbines (WTs). WT noise (WTN) is reported to be highly annoying at levels from 30 to 35 dB and up, whereas for traffic noise people report to be highly annoyed from 40 to 45 dB and up. This has raised concerns as to whether WTN may increase risk for major diseases, as exposure to traffic noise has consistently been associated with increased risk of cardiovascular disease and diabetes. We identified all Danish dwellings within a radius of 20 WT heights and 25% of all dwellings within 20–40 WT heights from a WT. Using detailed data on WT type and hourly wind data at each WT position and height, we estimated hourly outdoor and low frequency indoor WTN for all dwellings, aggregated as nighttime 1- and 5-year running means. Using nationwide registries, we identified a study population of 614,731 persons living in these dwellings in the period from 1996 to 2012, of whom 25,148 developed diabetes. Data were analysed using Poisson regression with adjustment for individual and area-levels covariates. We found no associations between long-term exposure to WTN during night and diabetes risk, with incidence rate ratios (IRRs) of 0.90 (95% confidence intervals (CI): 0.79–1.02) and 0.92 (95% CI: 0.68– 1.24) for 5-year mean nighttime outdoor WTN of 36-42 and ≥ 42 dB, respectively, compared to <24 dB. For 5-year mean nighttime indoor low frequency WTN of 10–15 and \geq 15 dB we found IRRs of 0.90 (0.78–1.04) and 0.74 (95% CI: 0.41–1.34), respectively, when compared to and <5 dB. The lack of association was consistent across strata of sex, distance to major road, validity of noise estimate and WT height. The present study does not support an association between nighttime WTN and higher risk of diabetes. However, there were only few cases in the highest exposure groups and findings need reproduction.

Introduction

Focus on renewable energy sources has increased globally during the last decades, which together with reduced costs has led to an increased number of wind turbines (WTs). WT noise (WTN) has consistently been associated with annoyance among people living by. Schmidt and Klokker (2014), Michaud et al. (2016a), Janssen et al. (2011), Michaud et al. (2016b). Also, reviews and meta-analyses have found WTN to be associated with self-reported disturbance of sleep, (Schmidt and Klokker, 2014, Onakpoya et al., 2015) although recent studies using objective measures of sleep have failed to find an association (Michaud et al., 2016; Jalali et al., 2016). This has raised concern as to whether WTN may increase risk for major diseases.

Recent studies have found exposure to road traffic and aircraft noise to be significantly associated with higher risk of diabetes, (Sorensen et al., 2013, Eze et al., 2017a, Clark et

al., 2017) whereas no association was found for railway noise (Roswall et al., 2018). In support of this, traffic noise has been associated with major risk factors for diabetes, including fasting blood glucose, (Cai et al., 2017) glycosylated hemoglobin, (Eze et al., 2017b) obesity (Eriksson et al., 2014, Pyko et al., 2015, Pyko et al., 2017, Christensen et al., 2016) and physical inactivity (Roswall et al., 2017; Foraster et al., 2016). The believed pathophysiologic pathways behind noise as a metabolic risk factor are activation of a general stress response and disturbance of sleep, which may lead to reduced insulin secretion and sensitivity, reduced glucose tolerance and altered levels of appetite-regulating hormones (Spiegel et al., 2004; Taheri et al., 2004; Mazziotti et al., 2011; McHill and Wright, 2017). Also, reduced sleep quality and quantity have both consistently been shown to increase risk of diabetes (Cappuccio et al., 2010).

Findings on traffic noise and diabetes are not readily applicable to WTN. Levels of WTN are generally much lower than noise from traffic in urban settings. However, WTN has been associated with a higher proportion of annoyed residents than traffic noise at comparable sound levels (Janssen et al., 2011). While people start reporting WTN to be highly annoying at levels from 30 to 35 dB and up, traffic noise is generally not reported as highly annoying at levels below 40–45 dB (Michaud et al., 2016). A potential explanation is that WTN depends on wind speed and direction making it less predictable than traffic noise, where the latter e.g. often abates at night. Also, amplitude modulation may give WTN a rhythmic quality different from e.g. road traffic noise. It has therefore been suggested that the characteristics of WTN relevant for annoyance may be better captured by metrics focusing on amplitude modulation or low frequency (LF) noise, rather than the full spectrum A-weighted noise as typically used in studies of traffic noise (Jeffery et al., 2014). A review from 2016 on LF noise (from various sources) indicated that LF noise was associated with annoyance and potentially sleep disturbance, although it was added that research in this area was scarce and with methodological short-comings (Baliatsas et al., 2016). Lastly, WTs are often placed in rural areas, where the auditory impact of WTs may be more pronounced as compared to more densely populated areas, due to less background noise from traffic, industry and others.

Two studies have investigated associations between WTN and self-reported diabetes: (Michaud et al., 2016a, Pedersen, 2011) A Canadian study of 1238 participants living within 12 km of a WT, among whom 113 reported to have diabetes, found no associations between estimated A-weighted residential WTN and prevalent diabetes (Michaud et al., 2016a). In the second study, results from two Swedish and one Dutch study population(s) were presented. In one of the Swedish study populations (N=744), A-weighted residential WTN was associated with an odds ratio (OR) for prevalent diabetes of 1.13 (95% confidence intervals (CI) 1.00–1.27) in analyses adjusted for age and sex. However, no association was seen for the other two study populations (N=1011, ORs of 0.96 and 1.00) (Pedersen, 2011). Both of these studies were cross-sectional, which prevent

conclusions on causality and chronological order of events, and with risk of selection and recall bias. No prospective studies have investigated associations between WTN and diabetes.

We aimed to prospectively investigate associations between long-term residential exposure to WTN and risk for diabetes in a nationwide register based study, combining data on WTN, meteorology, WT position and type, residential addresses, development of disease and socioeconomic indicators over the period 1996–2012.

Section snippets

Study base and estimation of noise

The study was based on the entire Danish population, where all citizens since 1968 can be tracked in and across all Danish health and administrative registers by means of a personal identification number (PIN) maintained by the Central Population Register (Schmidt et al., 2014).

We identified all WTs (7860) in operation in Denmark any time between 1980 and 2012 from the administrative Master Data Register of Wind Turbines maintained by the Danish Energy Agency. It is mandatory for all WT owners ...

Results

We identified 735,384 adults (age 25–84 years) living \geq one year in the inclusion dwellings. We excluded persons who had emigrated (n=40,190; 5.5%) or been recorded as disappeared (n=1475; 0.2%) prior to entry, who had unknown address for eight or more consecutive days in the five years prior to entry (n=57,668; 7.8%), who lived in hospitals or institutions at study start of follow-up (n=1599; 0.2%) or who had diabetes before start of follow-up (n=19.721; 2.7%). The final study ...

Discussion and conclusion

We did not find long-term nighttime exposure to outdoor or indoor LF WTN to be associated with increased risk of diabetes in a large prospective study based on the full Danish population ever exposed to WTN. The lack of association between WTN and diabetes was consistent across various strata, including sex, distance to a major road, validity of the noise estimate and total height of the nearest WT.

A major strength of the present study is the prospective nationwide design with information on ...

Acknowledgements

We wish to express our gratitude to DELTA, who even in the face of enormous datasets, has shown great expertise, diligence and ingenuity in all steps of the process towards estimating detailed wind turbine noise data useable for the epidemiological analyses. We are also indebted to Geoinfo A/S who made it possible to extract the GIS information relating to all address point covered in our study. ...

Source of funding

This study was supported by a grant [J.nr. 1401329] from the Danish Ministry of Health (the grant was co-funded by the Danish Ministry of Food and Environment and the Danish Ministry of Energy, Utilities and Climate). ...

Recommended articles

References (40)

C. Baliatsas et al.

Health effects from low-frequency noise and infrasound in the general population: is it time to listen? A systematic review of observational studies Sci. Total Environ. (2016)

J.S. Christensen et al.

Long-term exposure to residential traffic noise and changes in body weight and waist circumference: a cohort study

Environ. Res. (2015)

M. Foraster et al.

Long-term transportation noise annoyance is associated with subsequent lower levels of physical activity

Environ. Int. (2016)

G. Mazziotti et al.

Diabetes in Cushing syndrome: basic and clinical aspects

Trends Endocrinol. Metab. (2011)

I.]. Onakpoya et al.

The effect of wind turbine noise on sleep and quality of life: a systematic review and meta-analysis of observational studies

Environ. Int. (2015)

N. Roswall et al.

Residential exposure to traffic noise and leisure-time sports – a population-based study

Int. J. Hyg. Environ. Health (2017)

N. Roswall et al.

Long-term exposure to residential railway and road traffic noise and risk for diabetes in a Danish cohort

Environ. Res. (2018)

Backalarz, C., Sondergaard, L.S., Laursen, J.E., 2016. Big noise data for wind turbines. In: Wolfgang Kropp Ove,...

Y. Cai et al.

Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts

Eur. Heart J. (2017)

F.P. Cappuccio et al.

Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis

Diabetes Care (2010)

View more references

Cited by (25)

Health effects of wind turbine noise and road traffic noise on people living near wind turbines

2022, Renewable and Sustainable Energy Reviews

Show abstract ✓

A sustainable way forward for wind power: Assessing turbines' environmental impacts using a holistic GIS analysis

2020, Applied Energy

Citation Excerpt:

...Nocturnal turbine noise emissions can definitely affect neighboring residents' sleep quality [9,10,55]. In the literature there is no certain confirmation of adverse health impacts from WT noise, aside from sleep disturbances which are attributed to annoyance [10,56,57,58,59]. Studies show that annoyance statements are frequently influenced by the planning process and public participation [18]....

Show abstract ✓

Monitoring annoyance and stress effects of wind turbines on nearby residents: A comparison of U.S. and European samples

2019, Environment International

Citation Excerpt:

...Additionally, most WT also have lighting in the form of aircraft obstruction markings. These emissions have impacts on people living nearby (e.g., Michaud et al., 2016a, 2016b, 2016c; Pedersen et al., 2009; Poulsen et al., 2018a, 2018b; Pohl et al., 1999, 2012, 2018; Rudolph et al., 2017). To analyze and monitor WT impacts, reliable and valid indicators are required....

Show abstract ✓

Health effects related to wind turbine sound: An update ¬

2021, International Journal of Environmental Research and Public Health

A laboratory study on the effects of wind turbine noise on sleep: Results of the polysomnographic WiTNES study ¬

2020, Sleep

Evidence relating to environmental noise exposure and annoyance, sleep disturbance, cardio-vascular and metabolic health outcomes in the context of IGCB (N): A scoping review of new evidence ¬

2020, International Journal of Environmental Research and Public Health

View all citing articles on Scopus ↗

View full text

© 2018 Elsevier Inc. All rights reserved.

All content on this site: Copyright © 2025 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

